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Sob& Uppuluri, and Frankowski, (Selected Tables in Math. Statistics, Vol. IV. 
Amer. Math. Sot., Providence, R. I., 1977) consider an incomplete Dirichlet 
integral of type I with several interesting applications connected with the 
multinomial distribution and provide tables of this integral along with other useful 
tables. Two incomplete Dirichlet integrals are discussed here along with some 
useful recurrence relations, providing simple methods of deriving the distribution 
theory of ordered uniform spacings. 

1. INTRODUCTION 

A collection of random variables (Y,,..., Y,) is said to have a Dirichlet 
distribution with parameters (vi ,..., v,; vb+,), written as D(V, ,..., v,; vb+,) if 
they have the joint density 

T(v, + ..’ + &)+I) 

T(b) “’ r(vb+l) 

(1 -yI . . . ..-yb)“b+l-l (1.1) 

over the b-dimensional simplex S, = {(y, ,..., yb): yi > 0, i = l,..., b, 
Ctyi < 1) and zero outside Sb. This is a b-variate generalization of the 
familiar beta density. For an elementary exposition on Dirichlet distributions 
and some properties, see Wilks [ 1 l] and for a more detailed discussion as 
well as tables, see Sobel et al. [9]. Incomplete Dirichlet integrals are strongly 
connected with the multinomial and negative multinomial probabilities and 
these relations are explored in Olkin and Sobel [7] and Khatri and Mitra 
151. 
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In Section 2 we consider two incomplete integrals based on ( 1.1) called 
the .7 and J functions and derive simple recurrence relations as well as 
closed series expansions for them. For the main application in Section 3, let 
X , ,.,., X, denote independent U(0, 1) random variables. If 0 < X; < ... < 
X:, < 1 denote the order statistics, then the uniform spacings are defined by 

Y,=Xi -xi_,, i = l,..., n + 1, (1.2) 

with the definition Xh = 0 and XL + , = 1. It is easy to check that the joint 
distribution of (Y, ,..., Y,,) is an n-variate Dirichlet distribution D(l,..., 1; 1) 
with density 

f(Yl P.‘., Y,) = n! over the simplex S, = 
I 

yi > 0, i yi < 1 
I (I-3) 

=o otherwise. 

This is also the joint density of all the (n + 1) spacings which, of course, is 
degenerate because of the restriction c:” yi = 1. 

Statistics like the largest spacing, the kth smallest spacing, sum of the k 
largest spacings, etc., have been used in statistical literature to construct tests 
of goodness of fit and related hypotheses. See, for instance, Mauldon [6], 
Darling [3] or Barton and David [I]. Even earlier, Fisher [4] used the 
distribution of the largest spacing to construct a test of significance of the 
largest amplitude in harmonic analysis. Rao [8] defined (l-largest gap) as 
the “circular range” when the observations (X, ,..., X,) are on a circle of unit 
circumference and proposed a test of uniformity on the circle based on this 
circular range. Our objective here is to illustrate how one can derive the 
required distributional results for the ordered spacings using 7 and J 
functions and simple recurrence relations based on them. 

2. INCOMPLETE DIRKHLET INTEGRAL AND RECURRENCE FORMULAE 

Let (Y, ,..., YJ have Dirichlet distribution D(l,..., 1; n -b + 1) with n > b. 
For 0 <p < l/b the probability of the event ( Yi >p, i = I,..., b} may be 
represented by the integral 

where the expression in braces indicates that the integration is within the 
simplex Sb = { yi > 0, Cf yi < 1 } in Rb. It is clear that this integral is zero 
for p > l/b. For b = 0, we define J’,“‘( 1, n) to be equal to 1 if p is positive 
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and zero otherwise. A recurrence formula for $“(l, n) is obtained by 
integrating yb from p to 1 - Cf-’ yi and transforming yi to (y,/(l -p)). 
Thus 

n-b+1 b-l 

1 

= (1 -p)“J$,‘?,,(l, n). (2.2) 

Note that the region p/( 1 -p) > l/(b - 1) is the same as p > l/b, where the 
J-function vanishes. Using the notation (x) = x if x > 0 and = 0 if x < 0, and 
repeatedly using the relation in (2.2) gives 

J’,“‘(l, n) = (1 - bp)” Q-3) 

since for 0 <p < l/b, this iteration gives (1 - bp)” and otherwise we have 
zero at the outset. It may be pointed out that this particular result (2.3) can 
also be obtained by combining the results in Theorems 2.1 and 2.2 of Khatri 
and Mitra [5] which express a somewhat more general incomplete Dirichlet 
integral in terms of sums of multinomial probabilities. 

Similarly, when (Y ,,..., Y,) have a D(l)..., 1; n -b + 1) the probability of 
the event { Yi (p, i = l,..., b} for 0 <p < 1 is given for b < n by the incom- 
plete integral 

JF’(19 n, = (n - b)! o {xpri< 11 Lr ... I,“( l-+)n-bfI,i. (2.4) 
I 

This integral 7ib’(1, n) which we will refer to as the script T-function 
generalizes the I-function defined in Sobel et al. [9, p. 31 in that the value of 
p here need not be bounded by l/b as is the case in the definition of 
r’,“‘(l, n). This T-function is related to the J-function defined in (2.1) 
through the inclusion+xclusion principle. If Ai denotes the event {Vi > p}, 
i= 1 ,..., b, since ZF’(1, n) represents the probability of the complement of 
(Ui AJ, it is clear that 

27f’(l,n)= 2 (-I)j(Q) c’(l, n> 
i=O 

= i (-lr’ ; 
0 

(1 -.W 
i=O 

(24 

using (2.3). Note that (2.5) holds for all p although for p > l/b, some of the 
J-integrals on the right side of (2.5) vanish. 

The following recurrence formula on the ,7’-function which reduces a b- 
dimensional integral to (b - 1) dimensions, plays an important role in the 
numerical evaluations of these functions. Similar relations formed the basis 
for the numerical computations of the tables in Sobel et al. 191. 
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THEOREM 2.1. For b < n and 0 < p < 1, the integral defined in (2.4) 
satisfies the recurrence formula 

-;Ybb)(l, n) = 3~*p’) (1, n) - (1 --PI” L’$;,‘!p)(l, n). (2.6) 

Proof. From Eq. (2.5) and the recurrence relation (2.2) on the J- 
function, we have 

TF’(l,n)= i (-ly’(;) Ji(l,n) 
j=o 

+ (-l)‘::(l, n) 

=Yf-l’(l,n)+ 5 (-lr’ 
( 1 

;I; (1 -P)“J&/L,,(W 
j=I 

=YLb-“(l, n) - (1 -p)“7[~;I’)P)(l, n). 

A more direct (but somewhat longer) proof can be obtained from the 
definition (2.4) by a careful partial integration with respect to zb. 

3. EXACT DISTRIBUTIONS RELATED TO ORDERED SPACINGS 

Let Zi denote the ith largest among (Y, ,..., Y,+ ,) for i = l,..., k 
(1SkSn) and Zk+l,...,Zn+l denote the remaining unordered spacings, all 
of which are, of course, less than Z,. From the exchangeability of 
(Y, ,***, Y,, r) and (1.3), the joint density of (Z, ,..., Z,, Zk+ r ,..., Z,) is 

g(z, ,**-1 zJ = (n!)(n + l)‘k’ for z, 2 z2 > ... > zk, 

zi < zk for i > k, 2 zi < 1 (3.1) 

and zero otherwise, where for r < n, we use the descending factorial notation 
n”’ = n(n - 1) ... (n - r + 1). Let 0 Q ak < ak-, < . . . Q a2 <a, < 1 denote 
positive ordered constants with C: ai < 1. It is clear that the density of 
(Z r ,..., Z,) is non-zero only at such values (a, ,,.., ak). One can obtain the 
density of (Z, ,..., Zk) at such a point (a,,..., ok) from (3.1) by integrating 
(Z k+, ,..., zn) over the domain {(zk+ r ,..., z,): zi Q ak, i = k + l,..., n and 
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1 - c: ai - uk < xi+ i zi < 1 - ct ai}. This range of 
split as the difference of two regions giving the joint 
(Z , ,..,, Z,), namely, 

integration can be 
density function of 

f zl,...,zk (a, v..., dzi 

- . . 

fEf+,zi<(l-ok-&$)l (3.2) 

Writing A, = (1 - 2: ai) and pk = a JAk and making the transformation 
xi = zi/Ak, i = k + l,..., n in the first integral and the transformation yi = 
zi/(Ak - uk), i = k + l,..., II in the second, (3.2) may be expressed as 

f zI,....zk (a 1 ,**-, 
‘3) = (n n 

‘ !  ( + q’k’ 

x {A;-kcY;k-k(l, n - k) - (Ak - ak)n-k~j,$,fpk) (1, n - k)} 

in terms of the f-function defined in (2.1). Using (2.6) and (2.5), we obtain 
for k < n 

f zI,...,zk @, ,-**, ak) 
= nck)(n + l)(k)A[l-kTE-k+l)(l, n _ k) 

=nck)(n+ l)(k’ 5 (-l)j(“-j”’ ‘) (Ak-j~k)n-k, (3.3) 
j=O 

whenever 0 < uk < ... < a, < 1, C: a, < 1. It is of interest to ask for the 
density of the kth largest spacing Z, or that of the sum of the k largest 
spacings S = Ct Zi. Transforming from (Z,, Z, ,..., Z,) to (S, Z, ,..., Z,), we 
get 

= n(k)(n + l)(k) “2’ (-ly (n-;+ ‘) (1 -s-ja,>“-“. 
.i = 0 

Integrating a, ,..., uk- 1 in turn, with the limits ai+, < ui < (S - C:+, uj)/i for 
i = 2, 3,..., k - 1 (since s = Ct zj > c:+ i zj + izi), we get 

n-k+1 

fs,zk(sv ak) = dk)(n + l)‘k’ ,Fo (4 

x (n-t+ ‘) (1 -~-juk~~-k(k(sZ~~~t)!. (3.4) 
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Now integrating ak over the limits 0 to s/k and after considerable analysis, 
one gets for k < n 

nt I 
f&) = (n + l)! n F1 

c-l)“-‘+ ’ 
,rQ (j _ k)! (j - k)k- ’ k! k” “@ -j + I)! @ - k)“- ’ 

(3.5) 
for k/q<s,<k/(q- I), q=k+ I,..., n + 1. Mauldon [6] and Barton and 
david [l] also obtain this result using different approaches. 

On the other hand, integrating (3.4) with respect to s inside the summation 
over the range (ku,, 1 -ju,) for any fixed j, we obtain the density of the kth 
largest spacing Z,, namely, (for k Q n) 

j&(x) = nk (1 - (j + k)x)“-’ (3.6) 

for 0 ( x < l/k. In particular for k = 1, the density of the largest spacing is 

with cdf 

f,,(x) = n(n + 1) i (-ly’ n 
j=O 0 

j (1 - (j+ 1)x)“-‘, 

F=,(x)= 5 (-lr’ 
j=O ( 1 

n ; l (1 -jx)“. (3.7) 

It can be shown (e.g., through the finite difference operator) that for k = 1 
the above density and cdf vanish for x < l/(n + 1). These results have a long 
and interesting history. Stevens [lo] considered the following problem in 
geometric probability. Suppose that (n + 1) arcs of equal length x are 
marked off at random on the circumference of a circle of unit perimeter. 
What is the probability that these (n + 1) arcs will cover the entire circum- 
ference and, more generally, that there will be at most (k - 1) breaks? The 
answer to the first question is given by P(Z, < x) = F,,(x) given in (3.7) 
while the answer to the latter question is given by the cdf corresponding to 
the density (3.6). This is because the midpoints of the (n f 1) arcs divide the 
circumference of the unit circle into (n + 1) arcs Yi with joint density (1.3). 
Clearly there will be no breaks if {Z, < x) and at most (k - 1) breaks if 
Vk < xl* 

Corresponding results on the distribution of small spacings can be derived 
analogously. If Vi denotes the ith smallest spacing among (Y, ,..., Y,, + ,) for 
i= 1 ,..., k and (V,, ,,..., I’,+ i) the remaining unordered spacings, clearly 
from (1.3) 

fv, ,.... V”(VIY.9 II,) = n! (n + l)(k) 

for u, ( v2 < ... < vk, 

vi > uk for i= k+ l,..., n, i vi< 1, (3.8) 
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and zero otherwise. For k < n, let 0 < v, < . < vk < 1 denote ordered 
constants with C: vi + (n - k + l)v, < 1. The joint density of (V, ,..., V,) at 
(0 , ,***, v,J is obtained by integrating (vktl,..., v,J over the domain 
{(vk+ ,,..., v,): vi>vk, i=k+ l,..., n and O<C,“+r vi& 1 -v,-C:vi}. 
Thus for k < n, using the definition (2.1) and the relation (2.3), this joint 
density of (V, ,..., V,) can be written as 

f Yl,....Yk (v 1 ,***, Vk) 

(k) 1 _ vk -+ 
n-k 

= dk)(n + 1) 4 vi 
1 

J$:h-z+uiJL n-k) 

l-&i-(n-k+ 
n-k 

= dk)(n + 1) , 
1 

(3.9) 

whenever v, < v2 < ... < vk, C: vi + (n -k + l)v, < 1. The distribution of 
the sum of the k smallest spacings St = C: Vi as well as that of V,, the kth 
smallest spacing can be obtained from (3.9) analogous to the results (3.5) 
and (3.6). On the other hand, denoting by Sk the sum of the k largest 
spacings, because of the obvious relations 

s,* = 1 - Sn+l-k, ‘k = ‘“+2-k, (3.10) 

they can be derived for k > 2 more directly from (3.5) and (3.6). For 
instance, from (3.6) and (3.10) 

f”,(V) =fi,+,-&4 

=nk(n;l) z(-ly(‘J’) (l-(n+2-k+j)x)“-’ (3.11) 

for 0 ( x < I/(n + 2 - k). For the special case k = 1 we obtain the common 
result for ST = V, 

&,(v) = n(n + l)[ 1 - (n + l)v]“-‘, 0 < v < (n + 1)-l. 
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